
 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2392

ENCHANING SERVERLESS PERFORMANCE MONITORING

WITH ADVANCED METRICS

1 A.V. Murali Krishna, 2 D.Silas Prabhath, 3 G.Harshitha, 4 G.Shashank

1 Assistant Professor in the Department of C.S.E, Matrusri Engineering College, Saidabad, Hyderabad, Telangana, India

2,3,4 UG Scholar in the Department of C.S.E, Matrusri Engineering College, Saidabad, Hyderabad, Telangana, India

Abstract

Serverless computing simplifies application deployment by eliminating the need for server management, allowing

code to run on-demand and scale automatically. Among the most prominent platforms in this space is AWS

Lambda, which dynamically allocates computing resources based on event triggers. However, the internal

functioning of such platforms often remains hidden, resulting in challenges like unpredictable cold-start delays,

execution slowdowns, and temporary failures—all of which can hinder user experience and system efficiency a

robust observability solution tailored for AWS Lambda. We designed a Lambda function using Node.js that is

enhanced with custom instrumentation to emit detailed performance metrics—including execution time, error

tracking, and indicators for cold starts—directly to Amazon CloudWatch with every invocation. Using

CloudWatch’s extensive API support, we aggregate both native and custom metrics and visualize them through

Grafana dashboards. These dashboards provide real-time, interactive views with line graphs to monitor latency

trends, bar charts highlighting error rates, and indicators pinpointing cold-start events, thereby offering deep

insights into function behavior and reliability.We evaluated the system across a variety of workload patterns,

including steady traffic, sudden spikes, and provisioned concurrency setups. The results show how this framework

facilitates early detection of performance issues, supports data-driven decisions for scaling, and helps manage

operational costs more effectively. This work includes comprehensive guidance on setting up the environment,

configuring IAM roles, deploying Lambda functions, creating custom CloudWatch metrics, and designing

Grafana visualizations—making it a valuable resource for both developers and learners interested in serverless

monitoring and optimization.

I INTRODUCTION

Serverless computing has emerged as a game-

changing paradigm in application development,

allowing developers to focus purely on writing

code without the burden of managing servers or

infrastructure. This model automates resource

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2393

allocation, scaling, and maintenance, enabling

faster deployments and more agile development

cycles. AWS Lambda, a leading serverless

platform, exemplifies this approach by offering

seamless integration with the broader AWS

ecosystem, event-driven execution, and a cost-

efficient pay-per-invocation billing model. With

just a few configurations, developers can deploy

functions that respond to events without ever

touching the underlying infrastructure.

However, this high level of abstraction also

comes with inherent challenges. Since the inner

workings of the execution environment are

hidden from users, issues like cold-start delays,

concurrency throttling, and occasional execution

failures can arise without clear visibility or

warning. These factors become critical in

applications requiring consistent performance,

such as live data processing systems or

interactive APIs, where even minor delays can

degrade user experience or disrupt service

reliability.

Although AWS CloudWatch offers built-in

monitoring capabilities, its metrics are often

coarse-grained, providing only basic insights

such as invocation counts or average duration.

Such metrics are not sufficient to diagnose

performance anomalies at a granular level or to

understand behavior under dynamic workloads.

To overcome these limitations, this project

introduces an enhanced performance monitoring

solution that extends CloudWatch with custom

metrics and visualizes them using Grafana

dashboards. This integration offers real-time,

detailed insights into Lambda function behavior,

empowering developers and system operators to

detect bottlenecks early, make informed

scalability decisions, and optimize cloud resource

costs effectively.

II LITERATURE SURVEY

Mahmoudi and Khazaei (2020) introduced a

foundational performance model tailored for

serverless computing platforms, with a particular

focus on AWS Lambda. Their approach models

each Lambda function execution environment as

an M/M/c queuing system, where c denotes the

number of pre-warmed containers available to

handle incoming requests. Cold starts—instances

where no pre-warmed container is available—are

treated as anomalies with significantly longer

service times.

Through this model, they derived closed-form

equations for evaluating average latency,

throughput, and the probability of cold starts,

using key parameters like arrival rate (λ), service

rate (μ), and the size of the pre-warmed pool (c).

Their analysis revealed that performance remains

optimal when λ is significantly less than c·μ.

However, as λ nears this threshold, the system

experiences a sharp increase in cold starts and tail

latency. An important insight from their work is

the identification of a "sweet spot"—a

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2394

configuration range where slight increases in

reserved concurrency significantly mitigate cold

starts. Despite its utility for capacity planning, the

model assumes Poisson arrivals and lacks support

for modeling temporary, high-intensity traffic

bursts.

To evaluate and simulate these dynamics more

flexibly, the authors developed SimFaaS, a

discrete-event simulation engine that reproduces

serverless behavior using workload traces and

infrastructure configurations. SimFaaS simulates

key aspects like container lifecycles, queueing

delays, and cold starts. Validation results show

that the simulator closely aligns with analytical

predictions (within 5% error margin) under

steady workloads, while revealing greater

variability during bursty traffic. This tool enables

developers to perform “what-if” scenario

testing—such as altering memory allocations or

adjusting warm pool sizes—without incurring

real-world cloud costs. However, one limitation

is that SimFaaS remains offline, lacking

integration with live performance data or

visualization tools like dashboards.

Further extending their research, Mahmoudi and

Khazaei (2022) explored metric-based

modeling of serverless platforms by

incorporating resource utilization metrics—

such as CPU usage and memory footprint—into

their performance framework. This allowed for

the definition of multi-dimensional Service-Level

Agreements (SLAs), including memory-aware

execution time limits. Their enhanced model

offers a more comprehensive perspective by

linking performance latency with underlying

resource behavior, enabling better operational

insights. In a related work on broader

microservice platforms, the authors examined

how cold-start behavior differs based on

container image sizes. They found that larger

images (over 500 MB) tend to follow a Weibull

distribution for cold-start latencies, while

smaller images exhibit exponential

distributions. This finding emphasizes the

importance of container image optimization,

which is often overlooked in function-level

performance studies, yet is crucial for reducing

tail latency in microservice deployments.

Collectively, these studies provide a multi-

layered understanding of serverless performance,

ranging from analytical modeling and simulation

to real-world deployment implications, and form

a solid foundation for future work in

performance-aware serverless application design.

III EXISTING SYSTEM

In AWS Lambda deployments, monitoring is

primarily handled through AWS’s native

observability tools, with Amazon CloudWatch

playing a central role. CloudWatch Metrics

automatically collects aggregated data such as

invocation counts, execution duration, error rates,

throttling events, and provisioned concurrency

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2395

usage. Developers often supplement this with

CloudWatch Logs, which store custom log

outputs (e.g., console.log() statements) organized

by request ID, enabling traceability across

function executions. For alerting, CloudWatch

Alarms can be configured to notify teams when

specific thresholds are exceeded—such as an

error rate surpassing 1% within a five-minute

window. While these tools provide basic visibility

into function performance, they lack fine-

grained, real-time insights and often require

manual effort to correlate logs and metrics,

making it challenging to quickly diagnose issues

like cold starts, latency spikes, or transient

failures in dynamic workloads.

IV PROBLEM STATEMENT

Despite AWS Lambda offering built-in metrics

like Duration, Errors, and Throttles, these

standard observability features fall short in

several critical areas. One major limitation is the

inability to differentiate between cold starts and

warm invocations, making it difficult to

diagnose latency spikes caused by initialization

delays. Additionally, while CloudWatch Logs do

capture error messages, they lack real-time

correlation capabilities—making it hard to link

error spikes with specific traffic surges, API

endpoints, or configuration changes. The default

monitoring setup also doesn’t support granular

traffic pattern analysis, such as segmenting data

by transaction type or request origin, which is

essential for understanding sudden changes in

workload behavior. Furthermore, the need to

toggle between CloudWatch and external tools

for deeper analysis creates a fragmented

monitoring experience, slowing down

troubleshooting and reducing overall system

visibility. These gaps highlight the need for a

more comprehensive and unified performance

monitoring solution tailored to serverless

environments.

Objective

The primary objective of this paper is to enhance

the observability of AWS Lambda functions by

addressing the limitations of default monitoring

tools. This involves developing a custom Node.js

Lambda wrapper that emits detailed execution

metrics—such as cold-start events, memory

usage, and payload size—to CloudWatch on each

invocation. To ensure reliable metric tracking,

CloudWatch filters and alarms will be configured

programmatically using AWS CloudFormation or

the CDK. These metrics will then be visualized

through an integrated Grafana dashboard,

featuring latency trends, cold-start annotations,

error heatmaps, and concurrency utilization. The

framework will be validated through workload

simulations, including constant loads, bursty

traffic, and provisioned concurrency scenarios, to

assess performance and cost trade-offs.

Additionally, detailed documentation will be

created to guide users through setup, deployment,

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2396

and dashboard customization, making the

solution both practical for implementation and

useful as a learning resource.

V PROPOSED SYSTEM

To address the limitations of standard AWS

Lambda monitoring, we propose a robust three-

layered observability framework that combines

custom instrumentation, infrastructure

automation, and unified visualization. The first

layer focuses on custom instrumentation within

a Node.js Lambda function, where cold-start

events are detected using a boolean flag that

identifies when the execution environment is

freshly initialized. The function also captures

detailed invocation context, including payload

size, memory usage before and after execution,

and environmental tags like API endpoint and

deployment stage. Metrics are batched and

emitted asynchronously using the AWS SDK,

with retry logic to ensure reliability without

interrupting the main process. The second layer

leverages Infrastructure-as-Code (IaC) using

AWS CDK to define the entire monitoring setup,

including Lambda function configurations, IAM

roles, metric filters, alarms for cold starts and

latency, and a fully managed Grafana workspace.

This setup enables automated deployment across

development, staging, and production

environments while maintaining consistency. The

final layer provides unified visualization

through Grafana dashboards, which display

latency trends (p50, p90, p99), cold-start

annotations, error heatmaps, real-time

concurrency gauges, and cost-per-invocation

estimations. Each panel supports interactive drill-

downs into CloudWatch Logs Insights for deeper

analysis, creating a seamless workflow from

metric overview to log-level debugging. This

integrated system enhances visibility, accelerates

troubleshooting, and supports informed

performance and cost optimization decisions in

serverless applications.

VII IMPLEMENTATION

The proposed system is implemented as a

lightweight Single-Page Application (SPA)

developed in React and hosted on AWS S3 with

CloudFront for secure and scalable delivery. This

frontend interacts with a backend through a set of

RESTful endpoints exposed via Amazon API

Gateway, which is configured using AWS CDK

to support multiple deployment stages such as

development, staging, and production. Each route

on the API Gateway is directly linked to a

Lambda function responsible for executing

specific workload scenarios. The Lambda

Simulator component handles different

invocation patterns, including fallback logic for

simulating heavy processing, randomized traffic

bursts, and predefined workloads to represent

steady-state usage. These functions run on

Node.js 16.x, with modularized workload logic to

support testability and code clarity. To enable

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2397

observability, the Lambda Metric Function

wraps around the simulator and is instrumented

to capture detailed metrics on each invocation,

including cold-start detection through a module-

scoped boolean flag, memory profiling using

heap usage deltas, and payload sizing via byte

length calculations. Custom metrics are batched

and emitted to Amazon CloudWatch with

exponential backoff to ensure reliable delivery.

CloudWatch is configured to store both native

and custom metrics, and metric filters along with

alarms are defined programmatically to monitor

key thresholds like p99 latency breaches. For

visualization, AWS Managed Grafana is used to

present a unified dashboard, pulling data via IAM

roles and showcasing real-time insights across

five key panels: latency percentiles, cold-start

annotations, error heatmaps, concurrency

utilization, and estimated cost-per-invocation.

This integrated setup ensures seamless

monitoring, debugging, and performance tuning

of serverless applications.

VIII RESULTS

IX CONCLUSION

a comprehensive observability and performance

monitoring framework tailored for AWS

Lambda-based serverless applications. By

combining lightweight custom instrumentation,

infrastructure-as-code deployment, and real-time

visualization using AWS CloudWatch and

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2398

Managed Grafana, the system effectively bridged

the gap between theoretical performance

modeling and practical, production-grade

monitoring. Key accomplishments include

accurate cold-start detection via module-level

flags, contextual metric collection such as

memory usage and payload size, automated

deployment using AWS CDK for environment

consistency, and the creation of intuitive

dashboards that visualize latency percentiles,

concurrency, and cost metrics. The

implementation was thoroughly validated

through rigorous testing, demonstrating minimal

performance overhead and reliable alerting for

SLA violations. Despite its success, the

framework has certain limitations: CloudWatch’s

metric cardinality restrictions limited the

granularity of observations; trace-level

diagnostics such as call stacks were not

integrated, reducing root-cause visibility; and the

design remains tightly coupled to AWS, posing

challenges for cross-platform portability.

Moreover, while effective threshold-based alerts

were deployed, predictive analytics via machine

learning were not explored, and dashboard

flexibility was limited by static JSON

configurations. Overall, the project provides a

solid, extensible foundation for serverless

observability, with room for future enhancements

in traceability, portability, and intelligent

forecasting.

REFERENCES

[1] N. Mahmoudi and H. Khazaei, “Performance

Modeling of Serverless Computing Platforms,”

IEEE Transactions on Cloud Computing, vol. 9,

no. 4, pp. 1314–1328, 2020.

[2] N. Mahmoudi and H. Khazaei, “Temporal

Performance Modelling of Serverless Computing

Platforms,” in Proc. 6th Int. Workshop on

Serverless Computing (WOSC ’20), ACM, pp. 1–

6, Dec. 2020.

[3] N. Mahmoudi and H. Khazaei, “SimFaaS: A

Performance Simulator for Serverless Computing

Platforms,” in Proc. 11th Int. Conf. on Cloud

Computing and Services Science (CLOSER ’21),

Springer, pp. 1–11, 2021.

[4] H. Khazaei, N. Mahmoudi, C. Barna, and M.

Litoiu, “Performance Modeling of Microservice

Platforms,” IEEE Transactions on Cloud

Computing, vol. 10, no. 1, pp. 100–112, 2020.

[5] N. Mahmoudi and H. Khazaei, “Performance

Modeling of Metric-Based Serverless Computing

Platforms,” IEEE Transactions on Cloud

Computing, Early Access, Feb. 2022.

[6] B. Balakrishna, “Optimizing Observability in

AWS Lambda,” Journal of AI & Cloud

Computing, vol. 5, no. 2, pp. 44–52, 2023.

[7] M. Moksha, “AWS Lambda Observability

Best Practices,” Cloud Native Daily, May 2023.

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos
June 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 2399

[8] J. Richman, “Troubleshooting Serverless with

Managed Grafana,” AWS Blog, Oct. 2021.

[Online]. Available:

https://aws.amazon.com/blogs

[9] R. Kadikar, “Prometheus vs CloudWatch:

Metrics & Monitoring Showdown,” InfraCloud

Blog, Feb. 2024. [Online]. Available:

https://www.infracloud.io/blogs

[10] Amazon Web Services, “Monitoring and

observability for AWS Lambda,” AWS

Documentation, 2024. [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/

monitoring-functions.html

[11] AWS, “Amazon CloudWatch Pricing,” AWS

Pricing Page, 2024. [Online]. Available:

https://aws.amazon.com/cloudwatch/pricing/

[12] Grafana Labs, “Using AWS CloudWatch

with Grafana,” Grafana Documentation, 2024.

[Online]. Available:

https://grafana.com/docs/grafana/latest/datasourc

es/aws-cloudwatch/

http://www.ijbar.org/
https://aws.amazon.com/blogs
https://www.infracloud.io/blogs
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html
https://aws.amazon.com/cloudwatch/pricing/
https://grafana.com/docs/grafana/latest/datasources/aws-cloudwatch/
https://grafana.com/docs/grafana/latest/datasources/aws-cloudwatch/

